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Abstract. Transient processes occurring in electrochemical machining that lead to stationary, self-similar or other
modes, are considered. These modes can apply to a part of the surface during a process for a limited time. The
problem is formulated as a Hele-Shaw problem. Special high-precision numerical-analytical methods are developed
for its solution The singularities of the solution are removed by representing it by the sum of a known func-
tion that includes the singularities and an unknown function without singularities. The unknown functions are
determined by splines and a Schwarz integral.
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1. Introduction

During electrochemical machining (ECM) the work piece (WP) is one of the electrodes,
namely the anode, and the electrode-tool (ET) the cathode. The inter-electrode space (IES)
is filled with an electrolyte. A current source connects the two electrodes and, as a result of
this, dissolution takes place. By choosing the ET shape and its trajectory, we can obtain the
required WP shape.

In the layers near the electrodes, which have very small widths, namely of the order of
the size of molecules, the potential difference amounts to a few volts. During an ECM pro-
cess the current heats the electrolyte. Apart from this, the current also causes electrolysis of
the water. This means that hydrogen gas is produced on the cathode and oxygen gas on the
anode. Moreover, the electrolyte will become polluted by reaction products. All these phe-
nomena affect the electroconductivity of the electrolyte and also machining precision. The
usual machining methods apply various techniques to improve machining precision. Pulse-
cycle machining is used in particular, whereby the current is presented in the form of rect-
angular pulses. In the intervals between the pulses, the electrode tool is moved aside and a
change of electrolyte takes place [1, Chapter 1], [2, Chapter 1], [3, Section 1.2].

Methods for solving the non-stationary problem usually involve a calculation of the cur-
rent distribution and time shifts of surface points that are proportional to the current density.
When the rate at which electrochemical dissolution takes place is low, we have the opportunity
of using a quasi-stationary approach. Difficulties arise when local distances are considered
that are comparable to the inverse of the local curvature. Under these conditions, numeri-
cal methods are not sufficiently accurate and complex approaches are required. Much work
has been done in the field of non-stationary ECM by applying numerical methods to cases
where the inter-electrode channel has a low curvature. This is so-called one-dimensional elec-
trochemical shaping. Extensive reviews of such investigations can be found in [4, Section 1.2],
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Figure 1. Domain shapes on different planes (a) The interelectrode space (b) Complex potential plane (c) Paramet-
ric ζ plane.

[5, Chapter 2], [6]. Numerical modelling of two-dimensional non-stationary ECM for differ-
ent machining set-ups involves finite-difference and finite-element methods [7, 8] and bound-
ary-element methods [9–11]. Three-dimensional cases were considered in [12].

2. Reduction to a Hele-Shaw problem

As an example let us consider the two-dimensional ECM problem, when an electrode-tool
A′CB ′ moves vertically downwards with velocity Vet (Figure 1a). The dissolving surface of the
work piece is ADB.

The electrochemical dissolution process is described by Faraday’s law

dm= M

nF
Jηdt, m=ρAh, (1)

where m is the mass of the dissolved material, M,n are the atomic mass and valency of the
WP material, F =NAe is the Faraday number, NA is the Avogadro number, e is the electron
charge, t is the time, η is the current efficiency (fraction of current, used for the main process
of metal dissolution), ρ is the WP metal density, J =Aj is the current, j is the current den-
sity, A is the WP area, h is the dissolved metal thickness. The current efficiency may depend
on the current density or can be a constant (depending on the process conditions and prob-
lem statement). According to Ohm’s law, j=κE, where κ is the electrolyte conductivity and E
is the electric-field-strength vector. Applying expression (1) to a small area of the WP surface,
we obtain

dh
d t

=kηEn, k= Mκ

nFρ
. (2)

If we consider equipotential surfaces, then the streamlines are perpendicular to the work
piece. In another case the normal part En of the electric-field-strength vector is effective for
the ECM process.

We consider an ideal model of the machining process, when the anode and cathode poten-
tials do not depend on time, gassing and electrolyte heating are not essential, and thus we
can assume the electroconductivity to be constant in time and space. In this case the vector
field of the electric strength is potential and solenoidal. Thus, for the problem solution we can
use complex-variable methods. For each time the solution is sought as an analytic function of
the complex variable W(Z), where Z=X+ iY,X,Y are the Cartesian coordinates of the IES
points, W =�+ i� is the complex potential, � is the electric field potential, � is the stream

function. The electric field strength is given by E= dW
dZ .

If equipotential electrodes are considered, (the potential of the work piece ADB equals 0,
the potential of ET equals –U ), the complex potential domain, corresponding to IES is a ver-
tical strip (Figure 1b) and does not depend on time. In other cases the domain may have
another form (for example, a curvilinear strip) and can depend on time.
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This problem with condition (2) is equivalent to the well-known Hele-Shaw free-boundary
problem [13–17]. It is important to notice that this boundary condition is sufficient to con-
struct numerical methods for ECM problems without any additional analytical transforma-
tions. Methods involving finite or boundary elements are traditionally used for solving ECM
problems. These methods are very convenient to obtain solutions for IES of different shapes
[8–12]. But a simplicity of methodology is usually accompanied by a lower order of precision.
It does not cause an essential error, if the relative distance change during the process is not
large. In this case such methods may well satisfy practical requirements. If the process is of
long duration, then an accumulation of essential errors may arise. These errors can hardly be
compensated by increasing the number of nodes because of the nonlinear rate of calculations
growth. This leads to the necessity of constructing new advanced methods to solve numeri-
cally the unsteady ECM problem.

Below, both the WP and the ET shapes will be described by a parametric complex func-
tion Z(u, t), where u is a real variable. The particular value of this variable determines the
position of a surface point. In order to solve this problem with the help of complex-variable
function theory, the IES is conformally mapped onto a domain ζ of simple geometric shape
(for example, an upper half plane), upon which the parameter u can be taken equal to a value
ζ on the real axis. In contrast to the physical plane, the shape of the domain in the paramet-
ric-variable plane is the same at any time with three points being fixed. So, the problem can
be reformulated in parametric form: to find two analytic functions Z(ζ, t),W(ζ ) (or W(ζ, t)
in the general case). To calculate the solution at a next time instant, the derivative ∂Z

∂t
(ζ, t)

has to be calculated by using condition (2).
Suppose the angle of the tangent to the WP surface with the X-axis is θ . Then the

normal displacement of the surface dh and the normal strength En are given as dh =
Im

(
e−iθdZ

)
,En =Im

(
e−iθE

)
. Since ∂Z

∂u
=± ∣∣ ∂Z

∂u

∣∣ eiθ , Equation (2) is equivalent to the equal-
ity

Im

(
∂Z

∂u

dZ
dt

)
=Im

(
∂Z

∂u

∂Z

∂t
+ ∂Z

∂u

∂Z

∂u

du
dt

)
=Im

(
∂Z

∂u

∂Z

∂t

)
=kηIm

(
E
∂Z

∂u

)
. (3)

Here a bar denotes the complex conjugate. The electric field strength at the boundaries is
equal to

E= ∂W

∂u

(
∂Z

∂u

)−1

. (4)

Then, considering (4), we have that condition (3) can be written as

Im

(
∂Z

∂t

∂Z

∂u

)
=−kη∂�

∂u
. (5)

The boundary condition (5) is treated as an equation with respect to ∂Z
∂t
(ζ, t) on the

boundary of the IES. Once the equation has been solved, this derivative in the IES is recon-
structed as a solution of the boundary-value problem for the analytical function ∂Z

∂t
(ζ, t).

On the boundary parts corresponding to the electrode tool surface, dissolution does not
occur, so the right part of Equation (5) on this boundary is zero (in a coordinate system
connected to ET). Therefore, the unknown derivative ∂Z

∂t
(ζ, t) can be obtained as the solu-

tion of a Riemann-Hilbert boundary-value problem.
Equation (5) is equivalent to the Polubarinova-Galin equation [15, 17–20] for the Hele-

Shaw problem. As in [17, Equation (1.17)] its solution can be obtained by using Schwarz’s
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integral. We shall do this later after singularities have been removed for numerical conve-
nience.

3. Calculation of surface shapes that are independent of time

For comparison with further non-stationary numerical solutions and the testing of algorithms,
let us consider first some special cases of solutions of (5).

3.1. Stationary electrochemical shaping

In many ECM processes the most interesting aspect is the shaping stage, when the IES geom-
etry shape is time-invariant in spite of the ET moving into the WP body. During the shaping
stage, in the fixed coordinate system (X,Y ), the surface is moving together with the ET at a
velocity Vet. In the moving-coordinate system, Z=Z1 +Vett , Equation (5) takes the form

Im

[
Vet
∂Z1

∂u

]
=−kη∂�

∂u
, or Im

[
Vet
∂Z1

∂�

]
=−kη.

For example, if Vet is directed along the Y -axis (Vet =−i|Vet|) and the work piece is equipo-
tential (then W = i� on WP surface), the boundary condition takes the form

Im
dZ1

dW
=− kη

|Vet| . (6)

If η=const, this equation represents the arc of a circle with radius R= 1
2

|Vet|
kη

and centre at the
point 0+ iR on the strength hodograph plane dW/dZ1 [4]. Thus, this condition is analogous
to the condition on the free surface of a steady flow of a viscous fluid subjected to gravity
[20].

We introduce the dimensionless variables w=ϕ+ iψ=W/U,z=x+ iy=|Vet|Z
/
kηU . Then

(6) can be written as follows

Im
d z1

dw
=−1. (7)

Let us consider a stationary problem which has a simple analytic solution. The boundary con-
figuration must be analogous to IES, as demonstrated in Figure 1a. The solution is sought as
the sum z1(ζ )=z0(ζ )+z�(ζ ). The function z0 (ζ ) is assumed to be the function mapping the
upper half plane ζ (Figure 1c) onto a horizontal strip of unit width:

z0 (ζ )=−iw= 1
π

log
ζ −1
ζ +1

. (8)

Then Im ∂z0
∂w

=−1, whence according to (7), Im ∂z�
∂w

=Re ∂z�
∂u

=0.
As the shape of domain z�, a circle of radius α with the a from 0 to iγ̃ = i (1+γ )α,

−1<γ <1, is chosen (see Figure 2a).
The upper half plane ζ is mapped onto the plane z� domain by the following function

z� (ζ )=−2iα
(γ +1)2

(
ζ 2 −1

)− (1−γ 2
)
ζ
√
ζ 2 −1

(γ +1)2 −4γ ζ 2
. (9)

Results of calculations for different values of the parameter γ are presented in Figure 2b,
where the upper curves correspond to the ET surface shapes and the lower curves to the WP
shapes.
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Figure 2. Stationary ECM: (a) the z� domain; (b) IES shapes for α=0·9.

3.2. Self-similar solutions

3.2.1. The self-similar boundary condition
The self-similar property is borne out by the preservation of geometrical homothetic of the
interelectrode space with respect to a fixed point ZC . If some typical size l (t) is chosen as
the scale factor, then

z(ζ )= Z (ζ, t)−ZC
l (t)

is a dimensionless analytic function that is independent of time. As the shape of IES in the
parametrical variable plane does not change, the partial derivative reads

∂Z

∂t
=α (t) l (t) z (ζ ) , α (t)= 1

l (t)

dl
dt
, (10)

where α(t) is the relative speed of the scale-factor change. Considering (10) and presenting
the complex potential as W =Uw =U (ϕ+ iψ), where U is a scale factor, we obtain from
equality (5)

Im

(
z
∂z

∂ψ

)
=−1

λ
, λ= l2α

kηU
. (11)

After substitution of z= eχ , where χ =µ+ iν= log z, in (11), we get

e2µ ∂ν

∂ψ
= 1
λ
. (12)

This is the boundary condition of the self-similar problem.
The value of the component of the strength vector normal to a boundary can be obtained

from

∣∣∣∣
∂Rew

∂n

∣∣∣∣=
∣∣∣∣
∂z

∂ψ

∣∣∣∣
−1

=λeµ
[(

dµ
dν

)2

+1

]−1/2

.

The value of the non-dimensional constant λ in (12) should be determined as a part of the
solution.

If U and η are constant, then λ is independent of time if and only if ldl/dt is constant.
The latter condition provides

α (t)=
(

2t+α−1 (0)
)−1

, l (t)= l (0)
√

1+2α (0) t. (13)
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Hence we can consider t=− 1
2α(0) =− l2(0)

2kηUλ as the time when the dissolution process of some
initial singular work-piece shape begins. Taking into account the fact, that a self-similar pro-
cess is an attractor to which a nonstationary process apparently converges, gives the oppor-
tunity to avoid difficulties in starting calculating the dissolution of surfaces, having initially a
cusped shape or conductor-isolator contact.

3.2.2. Reduction to a hydrodynamic problem
There are several solutions of (11) obtained by Polubarinova-Kochina methods and their
modifications [18–22]. Here we use another method. It is based on reducing the original prob-
lem to the well-known hydrodynamical problem of the flow about a circular arc [23–25].

Let us consider problems with equipotential boundaries and constant current efficiency η.
Notice that condition (12) is similar to the boundary condition in the problem of external
flow over a circular arc of radius R by a stream of ideal liquid

− 1
R

= d θ
d s

=V0eτf
dθ

d�1
(14)

formulated with the help of the analytic Levi-Chivita function ω= log 1
V0

dW1
dZ1

= τf − iθ , where
Z1 =X1 + iY1 defines the flow-plane point coordinates; W1 =�1 + i�1 is the complex potential
of the flow, s is the arc abscissa, V0 is a typical velocity, θ denotes the angle of inclination
with respect to the X1-axis of the fluid velocity vector. To consider this auxiliary hydrodynam-
ical problem, let us represent (14) in dimensionless form

−a0

R
= eτf

dθ
dϕ1

, (15)

where a0 is a typical linear size, �1 =a0V0ϕ1,W1 =a0V0w1, z1 =Z1
/
R.

To turn this equation into the same form as (12), let us assume ω=2χ (in this case τf =
2µ, θ=−2ν). Besides we state the relation between the electrical and hydrodynamical complex
potential planes. While the equipotential boundaries have to correspond to the impenetrable
ones, we state w1 =−iw (so, ϕ1 =ψ). It is seen that under this condition

λ= l2α

kηU
=2

R

a0
(16)

and Equation (12) coincides with (15).
Therefore, the solution of the electrochemical problem is given by

z= eω/2 =
√
a0

R

dw1

d z1
, (17)

where w1(z1) is the solution of the hydrodynamic problem.
When taking the logarithm of z, we have to draw a cut from the point z=0 to infinity (if

the point z=0 is not on the boundary), then the domain corresponding to IES in the z1-plane
can be a circular triangle or a more complex figure. Thus, first, the hydrodynamic analogy
allows reducing the problem to that of conformal mapping (which, according to Riemann the-
orem, solves the problem about existence and uniqueness of the solution). Second, it gives
us the possibility to obtain an analytical solution for some cases. Third, in more complicated
cases, it allows us to apply the numerical methods developed earlier for hydrodynamical prob-
lems to solve the electrochemical problem.
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Figure 3. The self-similar ECM for a wire ET: (a) physical plane, (b) complex potential plane of the auxiliary flow,
(c) physical plane of the auxiliary flow, (d) plane of the parametric variable.

3.2.3. The problem of self-similar processing for a wire-shaped electrode-tool
Let us consider the problem of non-stationary self-similar processing with a wire ET. In the
cross-section the ET is represented by a point C (Figure 3a). Let us place the origin of the
coordinate system at the centre of similarity; this is at the point C. The domain which cor-
responds to IES in the plane of the complex potential W is a half-strip of width I/κ, where
I is the “plane” electric current I = J/b (current flowing through an electrochemical unit of
width b= 1). The horizontal boundaries of the half-strip correspond to the edges of the cut
A′CB ′ in the Z-plane, drawn vertically upwards from the point C. The complex potential
W1 =w1I/κ=−iW in the domain of the auxiliary flow is shown in Figure 3b, where arrows
show the images of the streamlines.

Let us construct the auxiliary flow in the plane z1 (Figure 3c). As was mentioned above,
the surface of the work piece corresponds to a circular arc in the plane z1. According to the
rule of conformity θ =−2ν (ν is the argument of Z, but θ is an angle of inclination of the
fluid velocity vector). So, at the point A (ν=−π) we have θ = 2π , at point B (ν= 0) : θ = 0.
Thus, the image of the treated self-similar surface is a complete circle ADB in the z1-plane.

On the cut CB ′ we have ν=π/2; then θ =−π . Taking into account that fluid flows out
of the domain through BC′ (see streamline images in Figure 3b) in a direction normal to the
boundary, we find that BC′ is a ray, directed downwards to the z1-plane. Since at another cut
CA′ we have ν=−3π/2, θ = 3π,CA′ in the z1-plane corresponds to the ray AC, directed as
BC′. The fluid flows into the domain through AC.

The flow domain constructed (Figure 3c) thus consists of two sheets and the lines BC′ and
AC′ have identical Cartesian coordinates.

Conformal mapping of IES from plane z1 to the plane w1 is made by use of the paramet-
rical plane ξ (upper half disk, see Figure 3d)

w1 =− i
π

log ξ, z1 = i+ i(ξ2 −1)3

ξ4(3− ξ2)
.

Then the complex potential w=Wκ/I of the ECM problem is equal to w= (log ξ)
/
π . With

the help of (17) we find the conformal mapping of the parametrical plane ξ onto the plane z

z=−i

√
a0

R

ξ2(3− ξ2)√
12π(ξ2 −1)

.

According to Figures 3a and 3d, z(i)=−i. Hence a0/R=3π . Therefore, using (16) with U =
I/κ, we can define the dimensionless constant λ=2

/
(3π). Finally we obtain

z=−i
ξ2(3− ξ2)

2(ξ2 −1)
. (18)
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Figure 4. Self-similar electrochemical machining by a wedge-shaped ET: (a) physical plane, (b) the plane of auxiliary
flow.

3.2.4. The problem of a wedge-shaped electrode-tool
The method described above is now used for the solution of the problem of a wedge-shaped
ET machining a surface inscribed in the angle πγ (Figure 4a). On the complex potential
plane w, the ϕ = 0 axis corresponds to the WP boundary (the potential of this surface is
assumed to be zero). As the potential of the cathode is negative, let us consider a strip cor-
responding to the IES domain in the complex potential plane (Figure 1b).

Let us consider the auxiliary flow formed in the plane z1 which corresponds to the vec-
tor field of the electric intensity under a self-similar ECM. The circular arc corresponds to
the WP surface and the external flow over the arc corresponds to the IES. Moving along the
WP surface from B to A, we note that the argument of the anode surface point changes from
−βπ to −γπ−βπ (Figure 4a). Correspondingly, θ changes from 2βπ to 2βπ+2γπ (see Fig-
ure 4b).

The plane w1 can be obtained by rotating the plane w clockwise through 90◦. We note
that the horizontal strip on the w1-plane corresponds to the stream of fluid flowing from
point source A to point sink B. The source and the sink are placed on the circular arc.

The argument of any point of the ET surface CB ′ on the z-plane is equal to zero; hence
θ = 0. The argument of points on the ET surface A′C is −π − δπ , hence θ = 2π + 2δπ . The
boundaries AC and BC′ on the z1-plane are the streamlines, and thus these boundaries are
the rays directed according to the mentioned angles.

The boundary-angle jump at point B is equal to 2βπ (Figure 4b); at point A it is equal to
2π(1−β−γ + δ). The third angle in the point C, placed at infinity, is equal to −(π +2δπ).

The solution of the hydrodynamical problem is now reduced to a conformal mapping of
the upper half-plane ζ , where the images of the singular points A,B,C are ζ =0,1,∞, respec-
tively, onto the flow domain z1 which is a triangle with circular edges. This is realised by stan-
dard means with the help of hypergeometric functions 2F1(a, b, c, ζ ), i.e., a linear-fractional
combination of two linearly independent integrals of a Gauss differential equation.

For this problem we have w1 (ζ )= − 1
π

log ζ−1
ζ

. Choosing any point ζ0, where, for exam-

ple, |z(ζ0)|=1, (say, point D), we have from (17) a0
R

∣∣∣dw1
dz1

(ζ0)

∣∣∣=1. After z1(ζ ) has been deter-
mined, we find

a0

R
=
∣∣∣∣πζ0 (1− ζ0)

dz1

dζ
(ζ0)

∣∣∣∣ .
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Figure 5. Shapes of self-similar surface for δ=0, β=0, (λ=1).

Figure 6. Shapes of self-similar surface for δ=1, 2β= δ−γ +1 (rotated trough 90◦ contraclockwise).

The ratio λ=2R
/
a0 is the dimensionless constant (16), which determines the rate of dissolu-

tion. The solution of the electrochemical problem is given by (17).
Figures 5 and 6 show the forms of the self-similar surfaces as predicted by the solutions

of the electrochemical problem and the corresponding values of the constant λ depending on
the angle coefficient γ . The values of the angle coefficient γ are given in the figures.

For many special cases the obtained solution can be represented in simpler form without
the use of hypergeometric functions. This is so when all sides of the circular triangle (or its
extensions) have a single intersection point. In another case straight sides (or their extensions)
have an intersection at the center of the circle. For example the solutions for β = 0, γ = 1
(ADB is a complete circle) are presented in Table 1. For all these solutions we have λ=1.

This problem has been solved before [21, 22] for the symmetrical case β=0, γ =1+ δ (the
asymptotes of the free surface are parallel to the wedge sides). In Figure 6 a solution of this
kind is depicted by a curve with γ = 2. The asymmetric case and cases for which β �= 0, γ �=
1+ δ have not been studied so far.

3.2.5. The problem of a wedge-shaped electrode tool with two isolated sides
The difference between this problem and that studied in the previous section is the role of the
rays AC and BC ′ in the z1-plane. They are equipotential flow boundaries now, so they are
normal to streamlines. While θ = 0 on BC′, this ray is directed vertically upwards for β = 0
or downwards for β≥1/4. Let us consider the second case.

The auxiliary complex potential-flow domain is the upper half plane with a cut from w1 =
i(C) to i∞ (A′,B ′); the points A and B are dipoles. Then w1 (ζ )= i

2
2ζ−1√
ζ (ζ−1)

. So, the angles
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Table 1. Analytic solutions of the problem for
β=0, γ =1.

δ z (ζ )

0 − 1
π

log
ζ −1
ζ

0·25 −
4
√
ζ

π

(
log

√
ζ −1√
ζ +1

+ 2√
ζ

)

0·5 −
√
ζ

π

(
log

ζ −1
ζ

+ 1
ζ

)

0·75 − ζ
3/4

π

(
log

√
ζ −1√
ζ +1

+ 2

3ζ
√
ζ

+ 2√
ζ

)

1 − ζ

π

(
log

ζ −1
ζ

+ 1
2ζ 2

+ 1
ζ

)

Figure 7. Shapes of self-similar surface for δ=0·5,2β= δ−γ +1 (rotated through 45◦ contraclockwise).

of the circular triangle are:

A :π
(

3
2

+2δ−2β−2γ
)
, B : 2βπ − π

2
, C :−2δπ.

Solutions, for which the asymptotes of the WP surface are in a symmetrical position relative
to the bisectrix of the wedge, are illustrated in Figure 7. Here the dependence λ(δ) for this
case is also presented. Solutions for δ=1 were considered in [24].

4. Solution of non-stationary ECM problems

The usual method has a following numerical solution scheme:

(1) for t=0 the primary anode shape Z(ζ,0) is fixed;
(2) the electric-field strength in selected WP points is determined;
(3) a time step is executed, and as part of this process, according Faraday’s law, a shift of

every point perpendicular to the surface, proportional to the field strength dZ=kηEnd t ,
takes place;

(4) the surface shape is calculated by using the new positions of these points, upon which
we return to step 2.
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Solving the problem numerically following this scheme, we can incur an uncontrolled
increase of the distances between the nodes. This process leads to divergence of the numer-
ical solution [12]. When non-stationary problems are solved, Equation (5) allows us to move
the surface points along the vector ∂Z

/
∂t and to find the surface position at the next time

instant. We suggest fixing the nodes on the boundary of a variable parametric plane. This
makes it possible to control the variations of the solution in time and avoid large variations.
This modification can stabilise non-stationary methods of solution [26, 27].

Let us consider a non-stationary electrochemical problem with the inter-electrode space
section as presented in Figure 1a, assuming that the ET boundary has a horizontal asymp-
tote. The developed method allows us to consider the variable η and electrode potentials, for
instance as functions of the kind η(κE),ϕa(κE),ϕc(κE). However, the actual functions essen-
tially depend on the electrode material, electrolyte consistency and other physical parameters.
Thus, studying the process with prescribed functions gives little information. Studying all the
process functions simultaneously is very complex and must be preceded by basic investigations
of the process independent of these factors. So, in this paper the current efficiency η and the
electrode potentials are considered to be constant. Then the domain of the complex potential
W is a vertical strip (Figure 1b).

It is more convenient for us to use dimensionless values in our calculations. In particular,
the complex potential is expressed as W =Uw=U (ϕ+ iψ). Dimensionless coordinates and
time are introduced as follows

z=Z/l, x=X/l, y=Y/l, τ =kηUt
/
l2, (19)

where l is a typical size independent of time. For an ET moving at a velocity Vet the l value
is assumed to be equal to the stationary gap for a plane-parallel IES l=kηU/|Vet|. Then the
modulus of the dimensionless ET speed is equal to 1. The non-dimensional time is equal to
the non-dimensional ET shift.

4.1. Method of solution for the non-stationary problem

The inter-electrode space and the complex potential plane are conformally mapped onto a
strip χ = σ + iυ (Figure 8). A strip is a more convenient domain for our numerical meth-
ods, because all functions obtained feature rapidly decreasing exponents at infinity and can
be approximated without essential error. Using another domain, for instance a half-plane or
a disk, we may have to deal with functions that have singularities with infinite derivatives.

The image of the inter-electrode space in the w-plane is a vertical strip. Then

w(χ)= iχ,
∂ψ

∂σ
=1. (20)

Figure 8. The auxiliary χ plane.
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As we can see from the problem statement, the function z (χ, τ ) tends to infinity for σ→±∞.
This implies that the Schwarz formula cannot be used. We suggest decomposing the function
z (χ, τ ) as follows:

z(χ, τ )=g(τ)z0 (χ)+ cτ + z� (χ, τ) ,
where the imaginary part Im z� (σ + iυ, τ)→0 when σ→±∞, so that the function z� (χ, τ)=
x�+ iy� is continuous on the boundary. Let us choose z0 (χ)=χ . Using the obvious plane-
parallel IES relations, we define

g (τ)=yB ′ (τ )−yB (τ) , c=− i
g (τ)

,
dg
d τ

(τ )= 1
g (τ)

−1.

In dimensionless variables the boundary condition (5) takes the form

Im

(
∂z�

∂τ

∂z

∂σ

)
= ∂y�

∂σ

dg
d τ
σ + 1

g

∂x�

∂σ
, χ =σ, (21)

Im

(
∂z�

∂τ

∂z

∂σ

)
= ∂y�

∂σ

dg
dτ
σ, χ =σ + i. (22)

Let us present the unknown derivative as a product of analytical functions ∂z�
∂τ
(χ, τ )=

i dz
dw (χ, τ) f (χ, τ ) and substitute the product in (21) and (22). On the equipotential bound-

ary w= iψ we have

Im

(
i
∂z

∂σ

dz
dw

f

)
=Im

(
∂z

∂σ

∂z

∂σ

(
∂ψ

∂σ

)−1

f

)
=
∣∣∣∣
dw
dz

∣∣∣∣
−2

Imf.

With regard to (20), the equalities (21), (22) take the form

Imf =
∣∣∣∣
dw
dz

∣∣∣∣
2(
∂y�

∂σ

∂g

∂τ
x0 + 1

g

∂x�

∂σ

)
, χ =σ, (23)

Imf =
∣∣∣∣
dw
dz

∣∣∣∣
2
∂y�

∂σ

∂g

∂τ
x0, χ =σ + i. (24)

The analytical function f (χ, τ) can now be found with the Schwarz formula.

4.2. Solution algorithm

Firstly, it is necessary to find a conformal mapping of χ onto the initial inter-electrode
domain z(ζ,0). The solution is found in the σm nodes. On each time step τj = j�τ the deci-
sion parameters are ym=Im z�

(
σm, τj

)
and y′

m=Im z�
(
σ ′
m+ i, τj

)
. The values of y�(σ, τj )=

Im z�(σ, τj ) and y�(σ + i, τj )=Im z�(σ + i, τj ) at the internal points between the nodes are
determined by means of cubic splines, with two continuous derivatives.

The value of z�(χ, τ) is obtained with the Schwarz formula

z� (χ, τ)= 1
2

∫ ∞

−∞
y� (σ, τ ) coth

π

2
(σ −χ)dσ − 1

2

∫ ∞

−∞
y� (σ + i, τ ) tanh

π

2
(σ −χ)dσ . (25)

Differentiating the spline presentation of z� (σ, τ ) with respect to σ , we have

∂z�

∂χ
(χ, τ)= 1

2

∫ ∞

−∞
∂y�

∂σ
(σ, τ ) coth

π

2
(σ −χ)dσ − 1

2

∫ ∞

−∞
∂y�

∂σ
(σ + i, τ ) tanh

π

2
(σ −χ)dσ .

(26)
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By using (20), (23) and (24), we obtain the derivative of ∂z�
∂τ
(χ, τj ) as

∂z�

∂τ
(χ, τj )= i

2
dz
dw

(χ, τj )

{(
1
g

−1
)∫ ∞

−∞
∂y�

∂σ

(
σ, τj

) ∣∣∣∣
dw
dz

(
σ, τj

)∣∣∣∣
2

coth
π

2
(σ −χ)dσ−

−
(

1
g

−1
)∫ ∞

−∞
∂y�

∂σ

(
σ + i, τj

) ∣∣∣∣
dw
dz

(
σ + i, τj

)∣∣∣∣
2

tanh
π

2
(σ −χ)dσ +

+ 1
g

∫ ∞

−∞
∂x�

∂σ

(
σ, τj

) ∣∣∣∣
dw
dz

(
σ, τj

)∣∣∣∣
2

coth
π

2
(σ −χ)dσ

}
=

= 1
g (τ)

(
1

g (τ)
−1

)
(χ − i)

dz�
dw

(
χ, τj

)+
(

1
g (τ)

−1
)

1
2g(τ)

dz
dw

(
χ, τj

)×

×
∫ ∞

−∞

∣∣∣∣
dz�
dw

(
σ, τj

)∣∣∣∣
2 ∣∣∣∣

dw
dz

(
σ, τj

)∣∣∣∣
2

coth
π

2
(σ −χ)dσ +

+
(

2
g (τ)

−1
)

1
2

dz
dw

(
χ, τj

) ∫ ∞

−∞
∂x�

∂ψ

(
σ, τj

) ∣∣∣∣
dw
dz

(
σ, τj

)∣∣∣∣
2

coth
π

2
(σ −χ)dσ .

(27)

The second expression of the derivative ∂z�
∂τ
(χ, τj ) is preferable, if the ET shape has singular-

ities, because it does not require integration along the ET boundary.
Now the time step, using an improved Euler method of 2nd order, can be carried out and

the process is repeated.

4.3. Testing

The evolution in time of the WT shapes for ET shapes as given by (9) are depicted in
Figure 9. Because of symmetry, we present only the right half of each curve.

The convergence to stationary analytic solutions is demonstrated in all cases considered.
It should be noted that the sharp ET shape existing for γ = 0·5, α= 0·9 can be subjected to
numerical calculation as well, owing to the properties of Equation (27).

4.4. Solutions for various ET shapes and gaps

Results of investigations of the machining of a WP featuring a trapezoidal hollow by a plane
electrode tool are shown in Figures 10, 11. In Figure 10 the ET moves vertically downwards
with dimensionless velocity equal to 1. In Figure 11 the ET does not move. The process is
presented in an electrode-tool coordinate system as shown in Figures 10a, 11a and in a WP
coordinate system in Figures 10b, 11b. In both cases a flat WP surface is formed asymptot-
ically, but when ET is moving, the gap size becomes stationary; in another case it increases
(the process tends to a self-similar behaviour). One can see that, in the first case, a flat surface
is forming more rapidly.

The more interesting feature of these examples is the formation initially of self-similar pro-
cesses in the vicinity of angle points of the dissolving surface. Such solutions can be obtained

Figure 9. Non-stationary solutions.
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Figure 10. Surface shapes, obtained under plane electrode-tool machining. Electrode tool moves vertically down-
wards (a) ET coordinate system, �τ =0·125 (b) Work piece coordinate system, �τ =0·25.

Figure 11. Surface shapes, obtained under unmovable plane electrode tool machining. (a) ET coordinate system,
�τ =0·125 (b) Work piece coordinate system, �τ =0·25.

in the same manner as in Section 3.2 (if we consider a two-sided isolated wedge with exterior
angle δ=1 [24]).

The machining by an ET with trapezoidal jut and hollow are illustrated in Figures 12, 13,
with a curvilinear jut (see Figure 14). One can see the partial stationary-process rise in the
immediate vicinity of the ET zone. Before the general stationary process is established on the
whole surface, local stationary configurations are revealed along some parts of the surface.
The greater the height of the hollow or jut d, the easier this temporary configuration can be
observed. The local stationary shape can be described by the method presented in Section 3.1
with z(χ)= eαπχ + (1+ i tanαπ)χ , where α is the angle between the ET side and the X-axis.

The accuracy of the obtained results was estimated. The demonstrated algorithm allows
varying the number of grid nodes and time-step value over a wide range. The accuracy is esti-
mated by the Runge rule. Besides, we may also redistribute the grid nodes on the electrodes
during the changing of the inter-electrode shape. Since the electrode-tool shape must remain
unchanged in time, the difference of this shape from the initial one may be used as an error
estimate. In the results presented here the error was found to be less than 0·1% for 100 nodes.
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Figure 12. Surface shapes, obtained under machining by an electrode tool with a trapezoidal jut. The electrode tool
moves vertically downwards, �τ =0·25, d=2.

Figure 13. Surface shapes, obtained under machining by ET with a trapezoidal hollow. The ET moves vertically
downwards, �τ =1, d=10.

Figure 14. Surface shapes, obtained under machining of a curvilinear work piece surface by a curvilinear electrode
tool. The electrode tool moves vertically downwards, �τ =5, d=20.

Figure 15. Interelectrode space (a) the physical plane (b) the complex potential of the auxiliary flow.

4.5. Non-stationary machining by a vertical plane electrode tool

The interelectrode space section is shown in Figure 15a, where ADB is a solute metal bound-
ary; C is the position of the edge of the plane ET position vertically. The regions correspond-
ing to the interelectrode space in the complex potential (Figure 1b) and the physical planes
are conformally mapped onto a strip χ of width 1/2.

The solution scheme is analogous to that described above. First, it is necessary to find the
conformal mapping z(χ,0) of the strip χ=σ + iυ onto the initial physical domain z according
to the primary interelectrode shape. For the primary plane surface, the mapping has the form
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z (χ,0)=g (0) sinhπχ =g (0) z0 (χ) , (28)

where g>0.
The z(χ, τ ) function is written as the sum z (χ, τ ) = g (τ) z0 (χ) + z� (χ, τ), so that

Im z� (σ + iυ, τ )→0 when σ →±∞. If at the initial time the position of the electrode point
is zC =0+ iyC , then g(0)z0(i/2)= zC and g(0)=yC .

On the straight line χ = σ + i/2,Re z� (σ + i/2, τ )= 0, so function z (χ, τ ) can be ana-
lytically extended onto a strip of with 1 (Figure 8). Then on the upper boundary χ = σ +
i Im z� (σ + i, τ )=Im z� (σ, τ ). Thus, we can use the Schwarz integrals (25), (26) to determine
the function z� (χ, τ) and its derivative ∂z�

/
∂χ .

In this problem the boundary condition (5) takes the form

Im

[
∂z�

∂τ

∂z

∂σ

]
=−∂ψ

∂σ
+ dg

d τ
∂y�

∂σ
x0, χ =σ,

Im

(
∂z�

∂τ

∂z

∂σ

)
=0, χ =σ + i

2
.

(29)

Since function dw
dz has a singularity at the point C (χ = i/2), let us consider the com-

plex potential of the auxiliary hydrodynamic problem. Suppose fluid moves with a horizontal
velocity at infinity equal to 1, along the lower boundary of the IES penetrating across the ET
(see Figure 15b). We have

w1(χ)= z0(χ)= sinh πχ.

The solution can be presented in the form

∂z�

∂τ
= d z

dw1
f (χ)=




∂z

∂ϕ1
f (χ), χ =σ,

−i
∂z

∂ψ1
f (χ) , χ =σ + i

2
.

(30)

Accordingly,

∂z�

∂τ

∂z

∂σ
=





∣∣∣∣
dz

dw1

∣∣∣∣
2
∂ϕ1

∂σ
f (χ) , χ =σ,

−i

∣∣∣∣
dz

dw1

∣∣∣∣
2
∂ψ1

∂σ
f (χ) , χ =σ + i

2
.

So, the boundary conditions (29) give

Imf (χ)=
∣∣∣∣
dw1

dz

∣∣∣∣
2(
∂ϕ1

∂σ

)−1(dg
d τ

∂y�

∂σ
x0 − ∂ψ

∂σ

)
, χ =σ,

Ref (χ)=0, χ =σ + i
/

2.

(31)
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Hence function f (χ) can be extended analytically onto a strip of width 1 and we can use
Schwarz’s formula (25) for its determination

∂z�

∂τ
= sinhπχ

d z
dw1

{∫ ∞

0

∣∣∣∣
dw1

d z

∣∣∣∣
2(
∂ϕ1

∂σ

)−1(dg
d τ

∂y�

∂σ
x0 − ∂ψ

∂σ

)
dσ

coshπσ − coshπχ
+

+
∫ ∞

0

∣∣∣∣
dw1

d z

∣∣∣∣
2(
∂ϕ1

∂σ

)−1(dg
d τ

∂y�

∂σ
x0 − ∂ψ

∂σ

)
dσ

coshπσ + coshπχ

}
=

= 1
g

dg
d τ

d z�
dw1

z0 −2 sinhπχ
d z

dw1

∫ ∞

0

∣∣∣∣
dw1

d z

∣∣∣∣
2(
∂ϕ1

∂σ

)−1
∂ψ

∂σ

coshπσdσ

cosh2 πσ − cosh2 πχ
. (32)

Note that the presentation (32) is unique; it is a consequence of the uniqueness of the solu-
tion of the homogeneous Riemann-Hilbert problem.

Expressions (25) and (32) for χ= i/2 are used to determine g(τ) and dg/dτ with zC =0+
iyC(τ) and dyC

dτ (τ ) taken into account, that is

yC (τ)=g (τ)+y�
(

i
2
, τ

)
=g (τ)+2

∫ ∞

0
y� (σ, τ )

dσ
coshπσ

, (33)

dyC
dτ

(τ )= dg
dτ
(τ )+ ∂ y�

∂τ

(
i
2
, τ

)
=

= dg
dτ
(τ )+2

dz
dw1

(
i
2
, τ

)∫ ∞

0

∣∣∣∣
dw1

dz

∣∣∣∣
2(
∂ϕ1

∂σ

)−1(dg
dτ
∂y�

∂σ
x0 − ∂ψ

∂σ

)
dσ

coshπσ
. (34)

Numerical results of machining by an immobile ET, the edge of which is at a distance
yC =1 from the initial position of the WP, are shown in Figure 16. In Figure 16b the curves
are scaled in such a way that the distance OD is constant. This serves to illustrate that the
non-stationary shapes approach the self-similar one (lower curve in Figure 16a and the upper
curve in Figure 16b), which is one of the cases mentioned above (Figure 6, γ =1). The ana-
lytical expression of this self-similar solution is

z (ζ )= 2
π

[√
ζ −1+ 1√

ζ

(
log

(√
ζ +

√
ζ −1

)
− i
π

2

)]
.

One can observe that the self-similar solution approaches the numerical solution very fast.
Shapes of the anodic surface during electrochemical machining with a moving ET are

shown in Figure 17. The electrode tool moves with constant speed, equal to 1 (the drawings
are rotated about 90◦). The initial distance between ET and WP is equal to 1.

In Figure 17a the coordinate system does not move; in Figure 17b the coordinate system
is connected with ET, �τ =25. In Figure 17c a coordinate system and scale factor were cho-
sen such that the convergence of WP to a self-similar form is visible. For this purpose the

Figure 16. Anodic surface shapes obtained by electrochemical solution with the help of the plane electrode tool for
yC =1: (a) in the usual scale, (b) the scale unit is the OD length.
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Figure 17. The shapes of the WP surface during electrochemical cutting for a moving plane ET (rotated about 90◦

counterclockwise).

modulus of the intersection point of the surface and the ray drawn at some small angle to
the X-axis was assumed to be equal to 1. The corresponding self-similar shape is shown in
Figure 5, (curve γ =1/2).

Close to the ET edge, the WP shape practically coincides with the stationary shape
(Figure 17b). The stationary WP shape is given by the formula y= (x2 −1)

/
2; see [4].

4.6. non-stationary machining by a wire-shaped electrode tool

The interelectrode-space section is shown in Figure 15a, where ADB is the solute-metal
boundary, C is the position of the point (wire) electrode tool. The shape of the domain in the
complex potential plane w, corresponding to the inter-electrode space, is shown in Figure 3b
(rotated about 90◦ clockwise).

By mapping the strip χ =σ + iυ onto the complex-potential domain, we obtain

w= 1
π

log
1+ ieπχ

1− ieπχ
,

dw
dχ

= i
coshπχ

.

In all other respects the method described in Section 4.5 is applicable.
The solution of the problem for a stationary ET is shown in Figure 18. The distance

between the electrode tool and initial work-piece surface yC equals 1. Because of symmetry,
we present only half of each curve. One can observe the convergence of the WP to a self-
similar shape as given by (18) (the lower curve in the Figure 18a and the upper curve in
Figure 18b).

In Figure 19 we present results for the dissolution of a curvilinear initial surface which are
obtained for a stationary wire-electrode tool, situated at a height yC = 0. These results show
the convergence of the process for different initial WP forms dissolving towards a self-similar
shape.

Results of machining by an electrode tool moving with constant speed are shown in
Figure 20 (the drawings are rotated through 90◦). The speed is equal to 1. The electrode tool
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Figure 18. WP surface shapes obtained as a result of electrochemical dissolution by a wire electrode tool for yC =1:
(a) in the usual scale, (b) by the use of OD as the unit length scale.

Figure 19. WP surface shapes obtained as a result of electrochemical dissolution by a wire-electrode tool with
yC =0: (a) in the usual scale, (b) the scale unit is CD.

Figure 20. WP surface shapes obtained by a moving electrode tool in a coordinate system which is connected with:
(a) initial WP surface, (b) electrode tool.

is denoted as a point. The electrode tool moves perpendicularly to the initial surface, which
was plane at the beginning of the process.

The presented results allow calculations of the process starting from a singular configura-
tion, when ET touches the WP surface, yC (0)=0, in τ =0. We assume that in the beginning
the process is self-similar. This assumption is based on two observations: initially the rate of
dissolution is much greater than the ET speed Vet; the self-similar shape (18) is an attractor
(see Figure 19). Then, using (13), (19) we can find the relation between the dimensionless time
and the shift of the lower point of the dissolved surface

�τ = 1
2λ
�2
y = 3π

4
�2
y,

where �τ is the dimensionless time of the self-similar step, �y is the corresponding shift of
the lower point of the surface. As ET moves, �τ is the simultaneous ET shift, i.e., the error
of the model. However, if �y �1, then �τ ��y .

It is obvious from Figure 20b that the convergence to a stationary process occurs in the
vicinity of the ET. The stationary surface shape is given as ([4])
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Figure 21. Formation of final WP surface shape.

y=− 1
π

log (2 cosπx) .

Figure 21 shows the formation of the final shape of a WP surface. One can see the nar-
rowing of the slot to the relative value 0·91985, which is explained by the proximity of the
starting ET position to the primary WP surface. Calculation shows that this narrowing rap-
idly disappears when the initial gap yC(0) increases. The curvature ω of this surface is in the
range −11·3≤ω≤π .

5. Conclusion

In this paper problems concerning the calculation of nonstationary electrochemical machining
have been considered. The effective numerical-analytical method was developed to investigate
prolonged transient processes with high accuracy. This method differs from the usual ones by
using analytical solutions of the Hele-Shaw problem to obtain the partial time derivative of
the work-piece-surface coordinates. It allows raising the accuracy up to order 3 and limit the
rate of computational time increase to n2 (n is the number of nodes). Moreover, it allows con-
trol of the node positions, thus increasing the stability of the numerical solution. The choice
of the parametrical domain shape (a strip) and removing the singularities of the solution also
improve the method.

Exact solutions of some stationary and self-similar problems were obtained independently.
The self-similar solutions were obtained by a reduction to an auxiliary hydrodynamical problem.
This problem was solved with the help of conformal mapping of circular triangles. The method
developed is more straightforward than the usual ones and simplifies the solution process.

The presented examples show that, in the considered processes, the formation of stable
configurations close to self-similar or stationary ones takes place sequentially or simulta-
neously. These configurations are described by the analytical solutions presented in the paper
which are related to different variants of the Hele-Shaw problem.

Many other examples may be considered to confirm the assumption that a self-similar solu-
tion is an attractor in these cases, when the electrode tool or some part of it does not move
towards the work-piece surface. In the case of a moving electrode tool, the stationary solution
is such an attractor. The method developed for solving the nonstationary problem gives the
opportunity to obtain long-time solutions that retain high accuracy and stability.

We can now formulate the following hypothesis. For a large-enough time every non-
stationary electrochemical-machining, ECM process (with ideality assumed) transforms the
work-piece surface into a combination of stationary, self-similar and final (as depicted in
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Figure 21) sections with transient regions between them. As is obvious from the above, these
three forms exhaust the set of asymptotic configurations for an ideal ECM. This concerns not
only point, plate-like or wedge-shaped electrode tools. For example, on a large scale, an ET
with circular, parabolic or hyperbolic sections looks like a point, a plate and a wedge ET,
respectively. The work piece with any limited shape transforms into one or several parts, hav-
ing circular sections with radii tending to zero. And so on.

A very important question for further investigations is taking account of the electrodes’
nonequipotentiality and inconstant current efficiency. Some different limiting cases may occur
in these processes. But studying the process with some experimental dependencies gives par-
tial results only. It gives very little information to the researcher, because the actual functions
depend on the physical parameters of the real process and can differ essentially. So, for a total
study of the problem, it is necessary first to obtain a compact form of inherent dependencies,
while using a minimal number of empirical parameters.

The Hele-Shaw problem has many different physical applications. The results obtained can
be used for modelling in the fields of hydrodynamics, multiphase flows, etc. Besides, the elec-
trochemical application presents a new problem that is of interest in the theory of Hele-Shaw
problems.
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